【廣告】
人工智能控制器
總而言之,當(dāng)采用自適應(yīng)模糊神經(jīng)控制器,規(guī)則庫(kù)和隸屬函數(shù)在模糊化和反模糊化過(guò)程中能夠自動(dòng)地實(shí)時(shí)確定。有很多方法來(lái)實(shí)現(xiàn)這個(gè)過(guò)程,但主要的目標(biāo)是使用系統(tǒng)技術(shù)實(shí)現(xiàn)穩(wěn)定的解,并且找到的拓樸結(jié)構(gòu)配置,自學(xué)習(xí)迅速,收斂快速。模糊邏輯控制應(yīng)用 主要有兩類(lèi)模糊控制器,Mamdani和Sugeno型。到目前為止只有Mamdani模糊控制器用于調(diào)速控制系統(tǒng)中。
運(yùn)用常規(guī)反向傳播學(xué)習(xí)算法。該系統(tǒng)由兩個(gè)子系統(tǒng)構(gòu)成,一個(gè)系統(tǒng)通過(guò)電氣動(dòng)態(tài)參數(shù)的辯識(shí)自適應(yīng)控制定子電流,另一個(gè)系統(tǒng)通過(guò)對(duì)機(jī)電系統(tǒng)參數(shù)的辯識(shí)自適應(yīng)控制轉(zhuǎn)子速度。后值得指出的是現(xiàn)在發(fā)表的大多數(shù)有關(guān)ANN對(duì)各種電機(jī)參數(shù)估計(jì)的,一個(gè)共同的特點(diǎn)是,它們都是用多層前饋ANNS,用常規(guī)反向傳播算法,只是學(xué)習(xí)算法的模型不同或被估計(jì)的參數(shù)不同。
能模仿人的決策和推理模糊控制行為。反模糊化實(shí)現(xiàn)量化和反模糊化。有很多反模糊化技術(shù),例如,大化反模糊化,中間平均技術(shù)等。輸出結(jié)點(diǎn)的權(quán)重調(diào)整迭代不同于隱藏結(jié)點(diǎn)的權(quán)重調(diào)整迭代。通過(guò)使用反向傳播技術(shù),能得到需要的非線性函數(shù)近似值,該算法包括有學(xué)習(xí)速率參數(shù),對(duì)網(wǎng)絡(luò)的特性有很大影響。些模糊控制器不僅用來(lái)取代常規(guī)的PI或PID控制器,同時(shí)也用于其他任務(wù)