【廣告】
人臉識(shí)別系統(tǒng)的研究始于20世紀(jì)60年代,80年代后隨著計(jì)算機(jī)技術(shù)和光學(xué)成像技術(shù)的發(fā)展得到提高,而真正進(jìn)入初級(jí)的應(yīng)用階段則在90年后期,并且以美國、德國和日本的技術(shù)實(shí)現(xiàn)為主;人臉識(shí)別系統(tǒng)成功的關(guān)鍵在于是否擁有的核心算法,并使識(shí)別結(jié)果具有實(shí)用化的識(shí)別率和識(shí)別速度;“人臉識(shí)別系統(tǒng)”集成了人工智能、機(jī)器識(shí)別、機(jī)器學(xué)習(xí)、模型理論、專家系統(tǒng)、視頻圖像處理等多種專業(yè)技術(shù),同時(shí)需結(jié)合中間值處理的理論與實(shí)現(xiàn),是生物特征識(shí)別的應(yīng)用,其核心技術(shù)的實(shí)現(xiàn),展現(xiàn)了弱人工智能向工智能的轉(zhuǎn)化。
點(diǎn)點(diǎn)時(shí)光(武漢)科技有限公司是校園移動(dòng)考勤信息化的,公司所推出的下一代校園移動(dòng)考勤產(chǎn)品—簽到莢,結(jié)合人臉檢測(cè)、人臉、人臉識(shí)別、檢測(cè)、GPS定位、WIFI定位、定位、錨點(diǎn)定位、云計(jì)算、移動(dòng)互聯(lián)等先進(jìn)技術(shù),可有效防止考勤時(shí)困擾用戶的“代簽到”、“不到考勤點(diǎn)簽到”、“需排隊(duì)簽到”等問題。歡迎來電咨詢!
人臉與人體的其它生物特征(指紋、虹膜等)一樣與生俱來,它的性和不易被的良好特性為身份鑒別提供了必要的前提,與其它類型的生物識(shí)別比較人臉識(shí)別具有如下特點(diǎn):非強(qiáng)制性:用戶不需要專門配合人臉采集設(shè)備,幾乎可以在無意識(shí)的狀態(tài)下就可獲取人臉圖像,這樣的取樣方式?jīng)]有“強(qiáng)制性”;非接觸性:用戶不需要和設(shè)備直接接觸就能獲取人臉圖像;
并發(fā)性:在實(shí)際應(yīng)用場(chǎng)景下可以進(jìn)行多個(gè)人臉的分揀、判斷及識(shí)別;
除此之外,還符合視覺特性:“以貌識(shí)人”的特性,以及操作簡單、結(jié)果直觀、隱蔽性好等特點(diǎn)。
人臉識(shí)別系統(tǒng)主要包括四個(gè)組成部分,分別為:人臉圖像采集及檢測(cè)、人臉圖像預(yù)處理、人臉圖像特征提取以及匹配與識(shí)別。
人臉圖像采集及檢測(cè)人臉圖像采集:不同的人臉圖像都能通過攝像鏡頭采集下來,比如靜態(tài)圖像、動(dòng)態(tài)圖像、不同的位置、不同表情等方面都可以得到很好的采集。當(dāng)用戶在采集設(shè)備的拍攝范圍內(nèi)時(shí),采集設(shè)備會(huì)自動(dòng)搜索并拍攝用戶的人臉圖像。
人臉檢測(cè):人臉檢測(cè)在實(shí)際中主要用于人臉識(shí)別的預(yù)處理,即在圖像中準(zhǔn)確標(biāo)定出人臉的位置和大小。人臉圖像中包含的模式特征十分豐富,如直方圖特征、顏色特征、模板特征、結(jié)構(gòu)特征及Haar特征等。人臉檢測(cè)就是把這其中有用的信息挑出來,并利用這些特征實(shí)現(xiàn)人臉檢測(cè)。主流的人臉檢測(cè)方法基于以上特征采用Adaboost學(xué)習(xí)算法,Adaboost算法是一種用來分類的方法,它把一些比較弱的分類方法合在一起,組合出新的很強(qiáng)的分類方法。人臉檢測(cè)過程中使用Adaboost算法挑選出一些代表人臉的矩形特征(弱分類器),按照加權(quán)的方式將弱分類器構(gòu)造為一個(gè)強(qiáng)分類器,再將訓(xùn)練得到的若干強(qiáng)分類器串聯(lián)組成一個(gè)級(jí)聯(lián)結(jié)構(gòu)的層疊分類器,有效地提高分類器的檢測(cè)速度。