【廣告】
建立了一種復(fù)雜的數(shù)學(xué)模型,用于預(yù)測套管式換熱器內(nèi)流體的流動(dòng)及傳熱特性的數(shù)學(xué)模型,包括計(jì)算流體力學(xué)模型和計(jì)算傳熱學(xué)模型。其中,計(jì)算傳熱學(xué)模型中的瑞流擴(kuò)散系數(shù)是利用溫度方差和溫度方差耗散率來求解,而不是利用通常采用的數(shù)假設(shè)值或?qū)嶒?yàn)測定值來求解。綜合油一油管殼式換熱器此特點(diǎn),本課題著重研究換熱器殼程側(cè)的結(jié)垢。分析換熱器的物理模型,對模型進(jìn)行適當(dāng)?shù)暮喕謩e對換熱器的管側(cè)和殼側(cè)的溫度場進(jìn)行分析,研宄傳熱管束內(nèi)部的傳熱過程,同時(shí)分析換熱器殼側(cè)不同位置處的換熱情況。對換熱器的出口平均溫度進(jìn)行分析,分析出口平均溫度與設(shè)計(jì)溫度之間的誤差,評價(jià)換熱器的換熱性能。對換熱器殼側(cè)的速度場進(jìn)行研究,分析換熱器的結(jié)構(gòu)對自然循環(huán)的影響,并提出相關(guān)的意見對換熱器進(jìn)行優(yōu)化分析。
濰坊譽(yù)金機(jī)械對原穩(wěn)站油行山管殼式換熱器實(shí)體模型進(jìn)行簡化建模,同時(shí)兼顧課題研究的準(zhǔn)確性和經(jīng)濟(jì)性。
(1)建模時(shí)保留了折流板,考慮折流板對殼程流體流動(dòng)和傳熱的影響。
(2)對于傳熱管壁和折流板的處理采用了FLUEN丁中的薄壁模型,在后續(xù)的邊界條件設(shè)置時(shí)可以設(shè)定一個(gè)給定的壁厚,這樣減少了網(wǎng)格數(shù)量。
(3)管束的_l幾封頭和下封頭沒有參與整個(gè)換熱器的傳熱和流動(dòng),不影響數(shù)值計(jì)算的結(jié)果,因此在建模時(shí)將上封頭和下封頭進(jìn)行簡化處理。 在對換熱器結(jié)構(gòu)進(jìn)行建模時(shí),考慮換熱器入日和出口部分對于一換熱器殼程整體流動(dòng)特性的影響。Ozkaya和Aradag等人[4]利用CFD軟件數(shù)值模擬研究了V字形密封板式換熱器的流動(dòng)傳熱特性,模擬不同進(jìn)出口溫度和質(zhì)量流率的工況,得到了換熱器冷端和熱端的出口溫度和壓降,基于實(shí)驗(yàn)數(shù)據(jù),分析了不同努塞爾數(shù)和摩擦系數(shù)的相關(guān)性。由于單弓形折流板管殼式換熱器是復(fù)雜幾何體,網(wǎng)格劃分需要采用分塊劃分的方法,將整個(gè)模型劃分成入口段、出口段和殼程三部分,進(jìn)行網(wǎng)格劃分。網(wǎng)格為非結(jié)構(gòu)化網(wǎng)格,采用劃分的四面體和金字塔網(wǎng)格。
換熱器內(nèi)砂沉積對結(jié)垢位置的影響
換熱器內(nèi)管壁結(jié)垢主要受其液體介質(zhì)含砂濃度的影響,對管殼式換熱器殼程流場進(jìn)行了液一固兩相流數(shù)值模擬,根據(jù)模擬結(jié)果分析,確定換熱器的主要砂沉積位置。殼程為沙子和的兩相流動(dòng),沙子的粒徑根據(jù)現(xiàn)場采集的數(shù)據(jù)大約在0.2mm-O.}mm之間。油田原穩(wěn)站油一油管殼式換熱器內(nèi)部結(jié)構(gòu)復(fù)雜,結(jié)構(gòu)尺寸大,采用數(shù)值模擬研究時(shí),對計(jì)算機(jī)配置要求較高,采用CFD前處理軟件很難對現(xiàn)場實(shí)際模型進(jìn)行網(wǎng)格劃分,為便于研究分析,本課題在研究的過程中,對現(xiàn)場實(shí)際換熱器進(jìn)行模型簡化處理。本次研究選用沙子粒徑為0.2mm和0.4tn m,沙子的體積分?jǐn)?shù)選為10%,殼程進(jìn)口流速為0.7m/s,對管殼式換熱器的殼程流場進(jìn)行數(shù)值模擬。砂子體積分布的位置選取結(jié)果為沿?fù)Q熱器管長方向的四個(gè)截面,其中,z=-0.7n:為管殼式換熱器殼程出I:l處的一個(gè)截而,z二一0.39m與z=0.016m為靠近管殼式換熱器折流板的一個(gè)截面,z=0.7m為管殼式換熱器殼程入I-I處的一個(gè)截面。