【廣告】
木材烘干風機在實際應用過程中,葉片型線的優(yōu)化可能面臨一個問題。不同葉片高度的不同進水條件導致葉片型線優(yōu)化結果差異過大,難以對葉片型線進行過度優(yōu)化。為此,本文提出了多截面輪廓協(xié)同優(yōu)化的方法,建立了輪廓幾何與輪廓目標函數(shù)之間的關系,使得到的輪廓滿足三維實際要求。在優(yōu)化過程中,增加了葉片型線的幾何分析和設計點氣流角的調整模塊,以保證獲得的葉片型線能達到與原型相同的氣流轉向能力。同時,木材烘干風機設計點的氣動性能滿足一定要求,否則,可以以罰函數(shù)的形式盡快完成葉型的氣動分析,提高優(yōu)化過程的快速性。由于本文設計的單級風機的負荷比設計中采用的經驗公式高,因此有必要對每排葉片的稠度和展弦比進行調整。在確定優(yōu)化目標時,綜合考慮了設計點的性能和非設計條件,木材烘干風機對有效范圍內的剖面性能進行了研究。目標函數(shù)括號中的項為設計點損失,第二項為有效流入流角范圍,邊界為設計點損失的1.5倍,第三項為失速裕度,第四項為有效流入流角范圍內的平均損失,第五項為平均損失差的方差。有效流入角范圍內的分布。分子是分析葉片外形的氣動性能,分母是原型參考值。木材烘干風機利用加權因子w對截面之間的關系進行加權,設置目標函數(shù),得到損失小、失速裕度高的多截面S1剖面。各參數(shù)的權重和各截面的權重系數(shù)決定了優(yōu)化目標是集中于中間截面的性能,以及中間截面的損失和末端截面的失速裕度。
木材烘干風機葉尖渦度的增大可以有效地阻礙泄漏流的通過,使木材烘干風機泄漏流與主流混合造成的損失減小,葉片前緣泄漏量的增加小于中、后緣泄漏量的增加??傮w上,漏風量減少,提高了風機的性能。這與參考文獻中得到的前、后緣對木材烘干風機總壓損失系數(shù)的影響是一致的。隨著間隙的逐漸增大,葉頂前部的渦度強度增大,后緣的渦度強度減小,總體變化較小,泄漏量略有增加。葉片吸力前緣中部渦度強度略有增加,沿弦長方向吸力面中部和后部渦度強度基本不變。木材烘干風機葉片前緣附近的渦度強度急劇增加。泄漏流與主流相互作用形成的泄漏渦將影響渦輪機械的內部流場和氣動性能,尤其是效率、木材烘干風機噪聲和穩(wěn)定的工作范圍。這是由于前緣點高度的變化導致的葉尖流動角度的變化。前緣點渦度強度的增加阻礙了吸力面附近的流入,也降低了主流與泄漏流的混合程度。雖然方案6的進風速度有所降低,但由于葉頂和后緣附近的渦度強度降低,木材烘干風機效率總體降低,相應的泄漏面積和泄漏流量增大。軸向速度分布可以反映轉子葉片流道內的流動能力和分離尾跡區(qū)的特征。因此,轉子葉片出口軸向速度分布的徑向分布如圖6所示,用于分析流量。由于葉根和葉頂端壁附件的附面層較厚,導致流體流過該區(qū)域后的軸向速度較小,而葉頂附件又因泄漏存在使軸向速度進一步減小。
在木材烘干風機葉片前緣形成了C形軸向速度分布,在翼型阻力的作用下,流入流的軸向速度減小,形成了一個低速區(qū)。吸入面沿轉子旋轉的相反方向形成橫向壓力梯度。根據(jù)機翼理論,通過吸力面的速度高于通過壓力面的速度,吸力面后緣形成高速區(qū)。進一步討論了動葉區(qū)中間流動面內的總壓力分布。分析了在設計流量下動葉區(qū)中流面內的總壓分布。通過與初步三維設計結果的比較,兩種設計方案的氣動參數(shù)徑向分布一致,證實了木材烘干風機設計過程中S2流面設計的準確性和可靠性。由于木材烘干風機葉片壓力面所做的工作,壓力面上的總壓力明顯高于吸力面上的總壓力,總壓力沿動葉片旋轉方向由壓力面逐漸下降到吸力面。總壓逐漸升高,但吸入面略有變化。這是因為當氣流通過葉柵時,從吸力面到相鄰葉片壓力面的離心力沿葉片高度逐漸增大。為了抵消離心力的影響,將葉片設計為扭曲葉片后,沿葉片高度方向產生橫向壓力梯度,使兩個力達到平衡,吸力面附近有一個負壓區(qū)。由于木材烘干風機葉片的吸入面和壓力面之間的壓差較大,位于壓力側的流體通過葉尖間隙流向吸入面,導致葉尖間隙中的泄漏流。泄漏流與主流相互作用,產生較大的泄漏損失。