為了降低鋼件的脆性,將淬火后的鋼件在高于室溫而低于650℃的某一適當溫度進行較長時間的保溫,再進行冷卻,這種工藝稱為回火。退火、正火、淬火、回火是整體熱處理中的“四把火”,其中的淬火與回火關系密切,常常配合使用。金屬材料表面處理技術與金屬熱處理和表面熱處理不是一個類型的慨念。一般把金屬表面防護和改性稱之為金屬材料表面處理,改變金屬材料表面組織結構和力學性能指標稱為金屬表面熱處理。

表面熱處理是只加熱工件表層,以改變其表層力學性能的金屬熱處理工藝。為了只加熱工件表層而不使過多的熱量傳入工件內部,使用的熱源須具有高的能量密度,即在單位面積的工件上給予較大的熱能,使工件表層或局部能短時或瞬時達到高溫。表面熱處理的主要方法有火焰淬火和感應加熱熱處理,常用的熱源有氧yi炔或氧丙烷等火焰、感應電流、激光和電子束等。

高溫滲碳。滲碳作為一種常見的金屬表面處理工藝,將被處理件植入到具有活性滲碳的介質中,并在一定的加熱溫度內保持足夠時間,在不破壞加工件心部原有成分結構的基礎上,促進滲碳介質析出活性碳原子,使之滲入到鋼件表層以獲取表層高碳,從而提升產品的硬度和耐磨度。綜合來講,與其他化學熱處理無異,高溫滲碳亦是通過分解、吸附以及擴散三個流程實現機理作用??茖W研究表明,鋼件的分子構成比較特殊,碳在其中的擴散速度與溫度息息相關。具體而言,溫度每提升 50℃,鋼件的滲碳速度可增長近一倍之多,合理的溫度控制,在保證滲碳效果的同時,還可有效縮短高溫滲碳工藝時間,是企業(yè)提升產能、降低成本的重要方式。需要客觀指出的是,滲碳溫度也需控制在一個合理范圍內,過高可能會加速設備老化,同時還應保持足夠的熱處理時間。

真空加熱、常壓或高壓氣冷淬火時氣流均勻性對零件淬硬效果和質量分散度有很大影響。采用計算機模擬手段研究爐中氣流循環(huán)規(guī)律,對于改進爐子結構變具有重要意義。真空滲碳是實現高溫滲碳的可能的方式。但在高溫下長時間加熱會使大多數鋼種的奧氏體晶粒度長得很大,對于具體鋼材高溫滲碳,重新加熱淬火對材料和工件性能的影響規(guī)律加以研究,對優(yōu)化真空滲碳、冷卻、加熱淬火工藝和設備是很有必要的。近幾年,國際上有研究開發(fā)使用氣體燃料的燃燒式真空爐的動向。在真空爐中采用氣體燃料加熱的困難太多,雖然有節(jié)約能源的說法,但不一定是一個重要的發(fā)展方向。