【廣告】
蛋白質結晶涉及四個重要步驟
1. 蛋白質純度的確定。如果不夠非常純,必須要進一步純化。
2. 蛋白質溶解于合適的溶劑中,從中它能通過一種鹽或有機化合物而析出。溶劑通常是水-緩沖劑溶液,有時加,如2--2,4-(MPD)。正常情況下,沉淀劑也被加入,但是濃度不高于使沉淀產生。對于不溶于水-緩沖劑或水-的膜蛋白,還需要加入去污劑。
3. 使溶液過飽和。在這一步中,小聚集體形成,它是晶體生長所需的核。對小分子的結晶來說,相比于蛋白質更為人熟知,晶核的自發(fā)形成需要提供表面張力能。一旦這個能障被突破了,晶體開始生長。能障在高水平的過飽和度時很容易克服。因此,在高過飽和度時,晶核更易自發(fā)形成。晶核的形成可作為一個過飽和度和其他參數的函數通過多種方法來研究,包括光散射、熒光去極化及電子顯微鏡。
4. 一旦晶核形成,晶體生長正式開始。對低分子量的化合物而言,新分子會逐步結合到正在生長的晶體表面。這是由于這些位置的結合能比較大,相對于分子結合到平滑的表面。這些步驟要么由晶系缺陷造成,要么發(fā)生在表面隨機形成的晶核。
蛋白結晶板研究
再用原子力顯微鏡,磷光成像儀,光密度儀或激光共聚焦掃描儀進行檢測,獲得靶蛋白表達的種類,數量及關聯等信息.蛋白質芯片已經用于研究蛋白質表達譜構成及變化,蛋白質與生物分子(蛋白質,核酸,配體等)的相互作用,抗原體篩選,酶與底物相互作用.蛋白質芯片在醫(yī)學臨床診斷,分析和篩選方面具有潛在的重要應用價值。
蛋白結晶板作用
隨著人類基因組測序計劃的完成 ,鑒定細胞內蛋白質表達,結構,功能及相互作用方式等成為后基因組時代的主要目標之一.為此 ,需要高通量的蛋白質組學研究的技術和方法.近年來出現的表面增強激光解吸 /電離,蛋白質芯片技術是一種操作簡單 ,方便快捷 ,樣本需要量少 ,敏感性高 ,特異性強的高通量的研究蛋白組學的方法 ,在蛋白質功能分析,標志物篩選,研發(fā)等方面具有廣泛的應用前景。