【廣告】
反激式開關(guān)電源輸出整流濾波電路工作狀態(tài)分析
反激式開關(guān)電源輸出整流濾波電路原理上是簡單的。但是,由于反激式開關(guān)電源的能量傳遞必須通過變壓器轉(zhuǎn)換實現(xiàn),變壓器的初次級兩側(cè)的開關(guān)(MOSFET或整流二極管)均工作在電流斷續(xù)狀態(tài)。在相同輸出功率條件下,反激式開關(guān)電源的開關(guān)流過的電流峰值和有效值大于正激式、橋式、推挽式開關(guān)電源。01μF以上的固定電容,可用萬用表的R×10k擋直接測試電容器有無充電過程以及有無內(nèi)部短路或漏電,并可根據(jù)指針向右擺動的幅度大小估計出電容器的容量。為了獲得更低的輸出電壓尖峰,通常的反激式開關(guān)電源工作在電感電流(變壓器儲能)斷續(xù)狀態(tài),這就進一步增加了開關(guān)元件的電流額定。
開關(guān)電源的電路拓撲對輸出整流濾波電容器影響也是非常大的,由于反激式開關(guān)電源的輸出電流斷續(xù)性,其交流分量需要由輸出整流濾波電容器吸收,當電感電流斷續(xù)時輸出整流濾波電容器的需要吸收的紋波電流相對大。
電容器及其寄生要素在連續(xù)同步降1壓調(diào)節(jié)器中形成不同的紋波電壓
圖3顯示了一個深度連續(xù)反激或者降1壓調(diào)節(jié)器的波形,其輸出電容器電流可以為正和負,而具體狀態(tài)會不斷快速變化。紅色線條清楚表明了這種情況,其電壓由這種電流乘以ESR得出,結(jié)果則為一種方波。電容器元件的電壓為方波的組成部分。它導致線性充電和放電,如藍色三角波形所示。僅當電流在過渡期間變化時,電容器ESL的電壓才明顯。這種電壓會非常高,取決于輸出電流升時間。電解電容器性能要求小體積、大容量由于電解電容器陽極為腐蝕多孔的閥金屬且表面生成一層極薄的介質(zhì)氧化膜,多數(shù)采用卷繞結(jié)構(gòu),很容易擴大體積,因此單位體積電容量非常大,比其它電容大幾倍到幾十倍。請注意,在這種情況下,綠色線條需除以10(假設25 nS電流過渡)。這些大電感尖峰就是在反激或降1壓電源中經(jīng)常出現(xiàn)雙級濾波器的眾多原因之一。
正確選擇電容器組的保護方式,是確保電容器安全可靠運行的關(guān)鍵,但無論采用哪種保護方式,均應符合以下幾項要求:
①保護裝置應有足夠的靈敏度,不論電容器組中單臺電容器內(nèi)部發(fā)生故障,還是部分元件損壞,保護裝置都能可靠地動作。
②能夠有選擇地切除故障電容器,或在電容器組電源全部斷開后,便于檢查出已損壞的電容器。
③在電容器停送電過程中及電力系統(tǒng)發(fā)生接地或其它故障時,保護裝置不能有誤動作。
④保護裝置應便于進行安裝、調(diào)整、試驗和運行維護。
⑤消耗電量要少,運行費用要低。
用于開關(guān)穩(wěn)壓電源輸出整流的電解電容器,要求其阻抗頻率特性在300kHz甚至500kHz時仍不呈現(xiàn)上升趨勢。電解電容器ESR較低,能有效地濾除開關(guān)穩(wěn)壓電源中的高頻紋波和尖峰電壓。而普通電解電容器在100kHz后就開始呈現(xiàn)上升趨勢,用于開關(guān)電源輸出整流濾波效果相對較差。揚聲器使用無源模擬分頻器,模擬均衡器使用電容來選擇不同的音頻頻段。
通過實驗可發(fā)現(xiàn),普通CDII型中4700μF,16V電解電容器,用于開關(guān)電源輸出濾波的紋波與尖峰并不比CD03HF型4700μF,16V高頻電解電容器的低,同時普通電解電容器溫升相對較高。當負載為突變情況時,用普通電解電容器的瞬態(tài)響應遠不如高頻電解電容器。高頻低阻抗化對于中小輸出功率開關(guān)電源的工作頻率除少數(shù)因價格限制而仍采用20~40kHz外,大多數(shù)均在50kHz以上。