【廣告】
針對(duì)鍋爐風(fēng)機(jī)廠家具體實(shí)例,本文采用結(jié)構(gòu)化網(wǎng)格進(jìn)行數(shù)值模擬,并利用Autogrid軟件提供的H型網(wǎng)格自動(dòng)生成功能生成進(jìn)水口和葉輪的終網(wǎng)格。鍋爐風(fēng)機(jī)廠家其他部分的網(wǎng)格生成是通過(guò)先劃分區(qū)域,然后手動(dòng)劃分網(wǎng)格來(lái)完成的。邊界及初始條件1)集熱器入口設(shè)為入口邊界,葉輪出口設(shè)為出口邊界,葉輪前盤(pán)、后盤(pán)和葉片的實(shí)體壁設(shè)為實(shí)體壁,轉(zhuǎn)輪邊界面與下一周期轉(zhuǎn)輪邊界面之間的連接設(shè)為PE。三元匹配連接,循環(huán)數(shù)設(shè)為12。設(shè)定鍋爐風(fēng)機(jī)廠家初始靜壓P=1.01325*105pa,初始溫度t=293K,軸向入口速度=18m/s,所有旋轉(zhuǎn)壁(如前盤(pán)、后盤(pán)、葉輪葉片等)的輸入速度n=1450r/min,其他非旋轉(zhuǎn)壁(如蝸殼)的輸入速度為零。由于流道內(nèi)軸流分布不均勻,葉輪前后盤(pán)不一致,為便于比較分析,沿葉輪圓周做了A、B兩段。葉輪通道內(nèi)的速度和壓力分布用云圖和矢量圖表示。給出了開(kāi)槽角度對(duì)風(fēng)機(jī)性能的影響。給出了葉片開(kāi)槽角度對(duì)風(fēng)機(jī)總壓和效率的影響結(jié)果。葉片開(kāi)槽使風(fēng)機(jī)的總壓和效率增加,但總壓明顯增加,效率增加不大。其中,方案7的壓力和效率增加較大,總壓增加3.87%,效率增加0.15%。針對(duì)鍋爐風(fēng)機(jī)廠家歷史運(yùn)行數(shù)據(jù)使用不足、建模周期長(zhǎng)的問(wèn)題,提出了一種基于較小二乘支持向量機(jī)(LSSVM)和拉丁超立方體采樣(LHS)的大型離心風(fēng)機(jī)性能預(yù)測(cè)方法。
鍋爐風(fēng)機(jī)廠家改造后,風(fēng)機(jī)總壓明顯提高。雖然方案一的總壓在大流量區(qū)和小流量區(qū)附近增加較多,但在額定流量附近總壓的改善不如方案三,結(jié)合效率提高的數(shù)據(jù),很明顯方案三是較佳的優(yōu)化方案。風(fēng)機(jī)總壓提高4.25%,效率提高1.49%。方案四,效率降低0.19%,主要是由于流經(jīng)槽的流體與原葉輪內(nèi)的高速流體發(fā)生強(qiáng)烈碰撞,造成沖擊損失。在風(fēng)機(jī)運(yùn)行過(guò)程中,當(dāng)集熱器流入葉輪轉(zhuǎn)輪時(shí),流體受到慣性力和科里奧利力的影響,在后圓盤(pán)B段附近形成高速區(qū),使B段附近的流速和流量大于A段,從而使風(fēng)機(jī)性能從兩個(gè)方面得到改善。一是提高前盤(pán)的徑向速度,即A段,使鍋爐風(fēng)機(jī)廠家出口處的流體速度趨于均勻;二是優(yōu)化后盤(pán)附近的速度梯度。由此可見(jiàn),開(kāi)槽后葉輪出口處的流速整體上得到了提高。葉輪轉(zhuǎn)輪內(nèi)靠近后圓盤(pán)的速度在整個(gè)轉(zhuǎn)輪內(nèi)比較均勻,沒(méi)有明顯的高速聚集區(qū),因此流場(chǎng)比較合理。與子午面上的原風(fēng)機(jī)相比,其軸向平均速度較高,速度梯度較小。因此,開(kāi)槽改善了葉輪通道內(nèi)的流場(chǎng),大大提高了鍋爐風(fēng)機(jī)廠家的總壓和效率。邊界層分離現(xiàn)象發(fā)生在原風(fēng)機(jī)葉片通道的吸力面上,形成較大的渦流區(qū);由于斜槽風(fēng)機(jī)葉片采用無(wú)氣鋼板焊接而成,為了簡(jiǎn)化網(wǎng)格生成,提高網(wǎng)格質(zhì)量,采用無(wú)厚度曲面建立了離心風(fēng)機(jī)的三維模型。在通道的后半段,邊界層分離現(xiàn)象也發(fā)生在通道的吸力面上。葉片壓力面上的壓力高于吸入面上的壓力。二次流在葉輪通道中形成(其部分速度沿葉輪的圓周方向)。同時(shí),在離心力的作用下,圓周方向形成一定的角度。
鍋爐風(fēng)機(jī)廠家蝸殼優(yōu)化設(shè)計(jì)方法的研究進(jìn)展橫截面面積的圓周變化、橫截面形狀、橫截面的徑向位置、蝸殼入口位置、蝸舌的結(jié)構(gòu)是蝸殼的五個(gè)主要幾何參數(shù)。其中蝸舌的位置、角度和形狀,在避免內(nèi)部沖擊、減少分離損失和降低噪聲等方面起著重要的作用。蝸殼的各幾何參數(shù)對(duì)風(fēng)機(jī)內(nèi)部流動(dòng)的影響并不是獨(dú)立的,它們之間既相互關(guān)聯(lián),又相互影響,因此,在確定這些幾何參數(shù)時(shí)要進(jìn)行考慮。采用數(shù)值計(jì)算與響應(yīng)面法相結(jié)合的手段對(duì)蝸殼的三個(gè)主要幾何參數(shù)(蝸殼出口的擴(kuò)張角、葉輪的露出長(zhǎng)度、蝸舌間隙)進(jìn)行了優(yōu)化,結(jié)果表明通過(guò)優(yōu)化蝸舌間隙和葉輪的露出長(zhǎng)度,不僅可以提高風(fēng)機(jī)的效率,還可以降低風(fēng)機(jī)的A聲級(jí)噪聲。按一維設(shè)計(jì)理論(等環(huán)量法)蝸殼型線應(yīng)為一條對(duì)數(shù)螺旋線。通過(guò)對(duì)方程的簡(jiǎn)化處理,鍋爐風(fēng)機(jī)廠家按照等邊基元法和不等邊基元法可以快速完成蝸殼型線的繪制。鍋爐風(fēng)機(jī)廠家采用改進(jìn)的等邊基元法繪制離心風(fēng)機(jī)的蝸殼型線,通過(guò)數(shù)值計(jì)算與實(shí)驗(yàn)研究,結(jié)果表明采用改進(jìn)的等邊基元法繪制蝸殼型線,不僅可以提高離心風(fēng)機(jī)的效率,還可以降低風(fēng)機(jī)的噪聲。在蝸殼型線一維設(shè)計(jì)理論的基礎(chǔ)上,通過(guò)考慮氣體粘性因素的影響,對(duì)風(fēng)機(jī)原外殼進(jìn)行了改進(jìn)。研究結(jié)果表明,通過(guò)考慮氣體粘性,對(duì)蝸殼型線進(jìn)行改進(jìn),可以減小蝸殼內(nèi)的流動(dòng)損失,提高風(fēng)機(jī)的效率。隨著計(jì)算機(jī)技術(shù)和計(jì)算流體力學(xué)(CFD)的發(fā)展,數(shù)值方法在渦輪內(nèi)部流動(dòng)模擬中得到了廣泛的應(yīng)用。
當(dāng)改進(jìn)后的方法不能滿足合作機(jī)組的性能要求時(shí),采用現(xiàn)代鍋爐風(fēng)機(jī)廠家設(shè)計(jì)理論完成了風(fēng)機(jī)的設(shè)計(jì),并詳細(xì)介紹了風(fēng)機(jī)各部件結(jié)構(gòu)參數(shù)的選擇原則。根據(jù)葉輪流道斷面面積逐漸變化的原理,建立了風(fēng)機(jī)葉片型線成形的數(shù)學(xué)模型。根據(jù)該數(shù)學(xué)模型,采用雙圓弧拼接的方法完成了葉片型線的繪制。設(shè)計(jì)的鍋爐風(fēng)機(jī)廠家效率為68%,比樣機(jī)提高19.9%,總壓由4626pa提高到5257pa,均滿足合作機(jī)組的性能要求。通過(guò)對(duì)原型風(fēng)機(jī)和斜槽風(fēng)機(jī)葉片通道流線圖的比較,可以看出所設(shè)計(jì)的風(fēng)機(jī)內(nèi)部流動(dòng)得到了很大的改善,從而驗(yàn)證了本文風(fēng)機(jī)設(shè)計(jì)方案的可行性。后介紹了離心風(fēng)機(jī)的瞬態(tài)計(jì)算方法,分析了瞬態(tài)計(jì)算中時(shí)間步長(zhǎng)的選擇原則。采用瞬態(tài)數(shù)值方法對(duì)新設(shè)計(jì)的風(fēng)機(jī)內(nèi)部流動(dòng)進(jìn)行了數(shù)值模擬。在瞬態(tài)計(jì)算結(jié)果穩(wěn)定后,鍋爐風(fēng)機(jī)廠家利用FW-H模型對(duì)設(shè)計(jì)風(fēng)機(jī)的氣動(dòng)噪聲進(jìn)行了計(jì)算。設(shè)計(jì)風(fēng)機(jī)的聲壓峰值為1100Hz,聲壓值為58dB。在遠(yuǎn)場(chǎng)噪聲計(jì)算中,隨著受流點(diǎn)到葉輪中心距離的增加,風(fēng)機(jī)噪聲值呈下降趨勢(shì)。(2)改造前后數(shù)據(jù)試驗(yàn):風(fēng)機(jī)改造后,鍋爐正常運(yùn)行1小時(shí),運(yùn)行參數(shù)穩(wěn)定。