【廣告】
人臉識別,是基于人的臉部特征信息進(jìn)行身份識別的一種生物識別技術(shù)。用攝像機(jī)或攝像頭采集含有人臉的圖像或視頻流,并自動(dòng)在圖像中檢測和跟蹤人臉,進(jìn)而對檢測到的人臉進(jìn)行臉部識別的一系列相關(guān)技術(shù),通常也叫做人像識別、面部識別。人臉識別系統(tǒng)主要包括四個(gè)組成部分,分別為:人臉圖像采集及檢測、人臉圖像預(yù)處理、人臉圖像特征提取以及匹配與識別。
迅速發(fā)展起來的一種解決方案是基于主動(dòng)近紅外圖像的多光源人臉識別技術(shù)。它可以克服光線變化的影響,已經(jīng)取得了的識別性能,在精度、穩(wěn)定性和速度方面的整體系統(tǒng)性能超過三維圖像人臉識別。這項(xiàng)技術(shù)在近兩三年發(fā)展迅速,使人臉識別技術(shù)逐漸走向?qū)嵱没?
非強(qiáng)制性:用戶不需要專門配合人臉采集設(shè)備,幾乎可以在無意識的狀態(tài)下就可獲取人臉圖像,這樣的取樣方式?jīng)]有“強(qiáng)制性”;非接觸性:用戶不需要和設(shè)備直接接觸就能獲取人臉圖像;
并發(fā)性:在實(shí)際應(yīng)用場景下可以進(jìn)行多個(gè)人臉的分揀、判斷及識別;
除此之外,還符合視覺特性:“以貌識人”的特性,以及操作簡單、結(jié)果直觀、隱蔽性好等特點(diǎn)。
主流的人臉檢測方法基于以上特征采用Adaboost學(xué)習(xí)算法,Adaboost算法是一種用來分類的方法,它把一些比較弱的分類方法合在一起,組合出新的很強(qiáng)的分類方法。人臉檢測過程中使用Adaboost算法挑選出一些1能代表人臉的矩形特征(弱分類器),按照加權(quán)投1票的方式將弱分類器構(gòu)造為一個(gè)強(qiáng)分類器,再將訓(xùn)練得到的若干強(qiáng)分類器串聯(lián)組成一個(gè)級聯(lián)結(jié)構(gòu)的層疊分類器,有效地提高分類器的檢測速度。
當(dāng)前社會(huì)上頻繁出現(xiàn)的入室偷盜、傷人等案件的不斷發(fā)生,鑒于此種原因,防盜門開始走進(jìn)千家萬戶,給家庭帶來安寧;然而,隨著社會(huì)的發(fā)展,技術(shù)的進(jìn)步,生活節(jié)奏的加速,消費(fèi)水平的提高,人們對于家居的期望也越來越高,對便捷的要求也越來越迫切,基于傳統(tǒng)的純粹機(jī)械設(shè)計(jì)的防盜門,除了堅(jiān)固耐用外,很難快速滿足這些新興的需求:便捷,開門記錄等功能。人臉識別技術(shù)已經(jīng)得到廣泛的認(rèn)同,但其應(yīng)用門檻仍然很高:技術(shù)門檻高(開發(fā)周期長),經(jīng)濟(jì)門檻高(價(jià)格高)。