【廣告】
超精密特種加工
加工精度以納米,甚至終以原子單位(原子晶格距離為0.1~0.2納米)為目標時,切削加工方法已不能適應,需要借助特種加工的方法,即應用化學能、電化學能、熱能或電能等,使這些能量超越原子間的結合能,從而去除工件表面的部分原子間的附著、結合或晶格變形,以達到超精密加工的目的。屬于這類加工的有機械化學拋光、離子濺射和離子注入、電子束曝射、激光束加工、金屬蒸鍍和分子束外延等。這些方法的特點是對表面層物質去除或添加的量可以作極細微的控制。
世界上的超精密加工強國以歐美和日本為先,但兩者的研究重點并不一樣。歐美出于對能源或空間開發(fā)的重視,特別是美國,幾十年來不斷投入巨額經費,對大型紫外線、x射線探測望遠鏡的大口徑反射鏡的加工進行研究。如美國太空署(NASA)推動的太空開發(fā)計劃,以制作1m以上反射鏡為目標,目的是探測x射線等短波(O.1~30nm)。由于X射線能量密度高,必須使反射鏡表面粗糙度達到埃級來提高反射率。此類反射鏡的材料為質量輕且熱傳導性良好的碳化硅,但碳化硅硬度很高,須使用超精密研磨加工等方法。
盡管隨時代的變化,超精密加工技術不斷更新,加工精度不斷提高,各國之間的研究側重點有所不同,但促進超精密加工發(fā)展的因素在本質上是相同的。這些因素可歸結如下。
對產品小型化的追求。伴隨著加工精度提高的是工程零部件尺寸的減小。從1989~2001年,從6.2kg降低到1.8kg。電子電路高集成化要求降低硅晶片表面粗糙度、提高電路曝光用鏡片的精度、半導體制造設備的運動精度。零部件的小型化意味著表面積與體積的比值不斷增加,工件的表面質量及其完整性越來越重要。