【廣告】
人工智能控制器
決策機(jī)TMAI模型可以處理大量實(shí)時(shí)性數(shù)據(jù),從數(shù)據(jù)中挖掘系統(tǒng)能耗潛力,給出超出傳統(tǒng)經(jīng)驗(yàn)的控制模式,可進(jìn)一步精細(xì)調(diào)控,即使到了深寒期,依然實(shí)現(xiàn)節(jié)能運(yùn)行。1、以“室”為終:以室溫為控制目標(biāo),穩(wěn)定室溫,平抑波動(dòng);快速調(diào)整、穩(wěn)定室溫,回到供熱的初衷:滿足用戶的室溫舒適。即使到了深寒期,依然實(shí)現(xiàn)節(jié)能運(yùn)行。
由于控制簡(jiǎn)單,直流傳動(dòng)在過去得到了廣泛的使用。但由于它們眾所周知的限制以及DSP技術(shù)的進(jìn)步,直流傳動(dòng)正逐漸被的交流傳動(dòng)所取代。但近,許多廠商也推出了一些改進(jìn)的直流驅(qū)動(dòng)產(chǎn)品,但都沒有使用人工智能技術(shù)。相信使用人工智能的直流傳動(dòng)技術(shù)能得到進(jìn)一步的提高。智能技術(shù)在電氣傳動(dòng)技術(shù)中占相當(dāng)重要的地位,特別是自適應(yīng)模糊神經(jīng)元控制器在性能傳動(dòng)產(chǎn)品中將得到廣泛應(yīng)用
不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經(jīng)、模糊、模糊神經(jīng),以及遺傳算法都可看成一類非線性函數(shù)近似器。這樣的分類就能得到較好的總體理解,也有利于控制策略的統(tǒng)一開發(fā)。這些AI函數(shù)近似器比常規(guī)的函數(shù)估計(jì)器具有更多的優(yōu)勢(shì),它們的設(shè)計(jì)不需要控制對(duì)象的模型(在許多場(chǎng)合,很難得到實(shí)際控制對(duì)象的動(dòng)態(tài)方程,實(shí)際控制對(duì)象的模型在控制器設(shè)計(jì)時(shí)往往有很多不確實(shí)性因素,例如:參數(shù)變化,非線性時(shí),往往不知道)。
總而言之,當(dāng)采用自適應(yīng)模糊神經(jīng)控制器,規(guī)則庫和隸屬函數(shù)在模糊化和反模糊化過程中能夠自動(dòng)地實(shí)時(shí)確定。有很多方法來實(shí)現(xiàn)這個(gè)過程,但主要的目標(biāo)是使用系統(tǒng)技術(shù)實(shí)現(xiàn)穩(wěn)定的解,并且找到的拓樸結(jié)構(gòu)配置,自學(xué)習(xí)迅速,收斂快速。模糊邏輯控制應(yīng)用 主要有兩類模糊控制器,Mamdani和Sugeno型。到目前為止只有Mamdani模糊控制器用于調(diào)速控制系統(tǒng)中。