【廣告】
本課題主要研究原穩(wěn)站用油油管殼式換熱器的三維數(shù)值模擬,換熱器以含砂作為內(nèi)部換熱介質(zhì),考慮換熱面結(jié)垢和泄漏的影響,建立管殼式換熱器結(jié)垢和泄漏的傳熱模型,借助軟件對(duì)換熱器溫度場(chǎng)、流場(chǎng)分布進(jìn)行模擬,分析結(jié)垢厚度、泄漏口尺寸、泄漏口位置、泄漏口數(shù)量對(duì)換熱器傳熱性能的影響,創(chuàng)新點(diǎn)如下:基于流體力學(xué)和傳熱學(xué)的流動(dòng)和傳熱基本公式,建立了管殼式換熱器結(jié)垢和泄漏的理論預(yù)測(cè)數(shù)學(xué)模型,運(yùn)用此模型解決了管殼式換熱器結(jié)垢及泄漏的理論預(yù)測(cè)分析。但是由于換熱器大多體積龐大,內(nèi)部結(jié)構(gòu)復(fù)雜,模型的網(wǎng)格處理比較復(fù)雜,且對(duì)計(jì)算機(jī)的配置要求高,前人的研究分為兩種,首先是利用多孔介質(zhì)模型,或者模擬換熱器理想模型。
管殼式冷凝器主要研究?jī)?nèi)容包括以下三部分:管壁污垢對(duì)管殼式換熱器流動(dòng)傳熱性能的影響規(guī)律研宄;上海交通大學(xué)的曾偉平在研究板式換熱器的換熱和壓降過(guò)程中,先從單相流在板式換熱器流動(dòng)出發(fā),建立了單相的換熱和壓降模型,獲得某種具體板型的換熱及壓降關(guān)聯(lián)式系數(shù),提出兩相流在板式換熱器中換熱的換熱關(guān)聯(lián)式和壓降公式。換熱面泄漏對(duì)管殼式換熱器流動(dòng)傳熱性能的影響規(guī)律研究;基于管殼式換熱器進(jìn)出口動(dòng)態(tài)參數(shù)一溫度、壓力等,對(duì)管殼式換熱器內(nèi)部故障進(jìn)行診斷評(píng)價(jià)研宄。本課題結(jié)合大慶油田分公司某大隊(duì)原穩(wěn)站用管殼式換熱器的運(yùn)行特點(diǎn),針對(duì)含砂油含砂油換熱器這一特殊介質(zhì),借助軟件,在充分利用已有基本理論和研宄成果的基礎(chǔ)上,對(duì)管殼式換熱器結(jié)垢和泄漏進(jìn)行了流動(dòng)傳熱的數(shù)值模擬,分析結(jié)垢和泄漏對(duì)換熱器流動(dòng)傳熱性響,研宄結(jié)論對(duì)利用換熱器熱工參數(shù)檢測(cè)管壁結(jié)垢和泄漏具有一定的理論用。
對(duì)于管殼式換熱器的流動(dòng)傳熱特性,綜合以上,將己有的研究分為三部分:
(1)利用FLUENT數(shù)值模擬軟件對(duì)管殼式換熱器進(jìn)行數(shù)值模擬,得到了符合實(shí)際的換熱器流動(dòng)傳熱性能;
(2)通過(guò)分析泄漏情況下?lián)Q熱器溫度參數(shù)的變化情況,提出了通過(guò)分析換熱器管程和殼程進(jìn)出口溫度變化來(lái)判斷換熱器是否泄漏的方法;側(cè)重分析其泄漏時(shí)殼程的流體流動(dòng)的流型。
(3)運(yùn)用熱力學(xué)能耗分析法,分析管殼式換熱器中污垢的厚度對(duì)換熱強(qiáng)度、流動(dòng)壓降及其有效能損失的影響。 國(guó)內(nèi)外己有的研究,缺乏對(duì)管殼式換熱器管程流體流動(dòng)傳熱的數(shù)值模擬研究,并且在換熱器的實(shí)際生產(chǎn)運(yùn)行過(guò)程中,對(duì)換熱器當(dāng)前運(yùn)行效果的診斷分析不明確。而管殼式換熱器的流動(dòng)傳熱特性是評(píng)價(jià)其結(jié)塘、池漏的關(guān)鍵,也是進(jìn)行有效預(yù)測(cè)的前提條件。
管殼式冷凝器邊界條件:入口為速度入口邊界,出口為壓力出口邊界,。對(duì)于沒有定義的邊界面軟件默認(rèn)為墻體邊界。在本課題中,根據(jù)大慶油田分公司產(chǎn)量,原穩(wěn)站管殼式換熱器殼程入口速度在之間,根據(jù)物性和模型尺寸,計(jì)算得出換熱器殼程的雷諾數(shù)之間,所以換熱器殼程內(nèi)部流動(dòng)為層流,多相流模型選為混合模型,混合物模型可用于兩相流或多相流(流體或顆粒)。采用有限體積法,使用分離式求解器,穩(wěn)態(tài)隱式格式求解;計(jì)算機(jī)模擬技術(shù)既能模擬真實(shí)條件,又能模擬某些理想化的假定,拓寬了實(shí)驗(yàn)研宄的范圍,便于分析各種情況下?lián)Q熱器的運(yùn)行特性,并減少了實(shí)驗(yàn)的工作量。速度壓力稱合方式采用基于交錯(cuò)網(wǎng)格的算法;流通介質(zhì)為含砂,物性參數(shù)為等效溫度下的常量;假設(shè)入口來(lái)流的速度均勾分布,忽略重力影響,殼體壁面和折流板采用不可滲透、無(wú)滑移絕熱邊界。使用速度入口和壓力出口邊界,采用層流的模型;選用二階迎風(fēng)格式。
管殼式換熱器運(yùn)行過(guò)程中的速度矢量分布,在換熱器運(yùn)行過(guò)程中,換熱器殼程入口段的速度矢量值在0.5m/s;順著折流板走向,換熱器殼程內(nèi)砂的速度矢量值相比較大,在I m/s至1.4m/s之問變化,在折流板!幾方的砂速度;在折流板逆向換熱器殼程內(nèi)介質(zhì)流動(dòng)方向的背部,固體砂的速度矢暈值,人約為0.1m/s這是由T一折流板的阻擋作川,降低一r砂的速度當(dāng)砂粒徑較大,質(zhì)較大時(shí),砂容易在速度降低區(qū)域形成砂分沉積。砂粒徑0.2mm時(shí),管殼式換熱器模擬運(yùn)行達(dá)到穩(wěn)定的情沉下,換熱器殼程內(nèi)沿?fù)Q熱器管民方向各個(gè)截而的砂體積分情況。山于此時(shí)管殼式換熱器殼程內(nèi)部流通介質(zhì)含的砂粒徑非常小,為0.2mm的流動(dòng)能很好的帶動(dòng)砂流動(dòng),導(dǎo)致?lián)Q熱器整個(gè)砂的體積分布較均勻,整個(gè)殼程的含砂量都較小,接近入2類石油。管外壁采用電加熱,來(lái)模擬均勻熱流條件,測(cè)得了不同工況下各種管徑的平均對(duì)流換熱系數(shù)和阻力系數(shù),擬合出了所測(cè)的參數(shù)范圍內(nèi)的阻力和換熱實(shí)驗(yàn)關(guān)聯(lián)式,并比較了相同管徑的波紋管和光管的換熱效果。