【廣告】
針對中壓除塵風機具體實例,本文采用結構化網格進行數值模擬,并利用Autogrid軟件提供的H型網格自動生成功能生成進水口和葉輪的終網格。中壓除塵風機其他部分的網格生成是通過先劃分區(qū)域,然后手動劃分網格來完成的。邊界及初始條件1)集熱器入口設為入口邊界,葉輪出口設為出口邊界,葉輪前盤、后盤和葉片的實體壁設為實體壁,轉輪邊界面與下一周期轉輪邊界面之間的連接設為PE。三元匹配連接,循環(huán)數設為12。設定中壓除塵風機初始靜壓P=1.01325*105pa,初始溫度t=293K,軸向入口速度=18m/s,所有旋轉壁(如前盤、后盤、葉輪葉片等)的輸入速度n=1450r/min,其他非旋轉壁(如蝸殼)的輸入速度為零。由于流道內軸流分布不均勻,葉輪前后盤不一致,為便于比較分析,沿葉輪圓周做了A、B兩段。葉輪通道內的速度和壓力分布用云圖和矢量圖表示。當中壓除塵風機流量小于設計流量時,經向速度mc1減小,入口相對速度與圓周切線方向的夾角小于葉片進口角1aβ,迎角為正。給出了開槽角度對風機性能的影響。給出了葉片開槽角度對風機總壓和效率的影響結果。葉片開槽使風機的總壓和效率增加,但總壓明顯增加,效率增加不大。其中,方案7的壓力和效率增加較大,總壓增加3.87%,效率增加0.15%。
中壓除塵風機葉輪由若干結構參數組成,這些參數對離心風機的性能有著重要的影響。相似原理在風機上的應用,極大地促進了風機的設計和改進。在風機設計中,根據相似原理,可以選擇現有的風機或經過試驗的機型進行相似設計,以保證風機達到預期效果。在沒有合適、的風機或模型的情況下,可以根據中壓除塵風機相似原理制作模型,然后將模型試驗的結果轉換為機器的實際結果,完成風機的設計。然而,相似原理的應用必須嚴格滿足幾何相似、運動相似和動態(tài)相似等相似條件??梢钥闯觯谙嗤臈l件下,通過風機轉速與葉輪出口直徑的比值,可以得到風機流量、靜壓、總壓和內功率的比例關系。然而,當只改變葉輪結構參數時,改進后的風機與原型風機的相似性將不能得到滿足。因此,本文通過改變中壓除塵風機葉輪的結構參數和數值計算方法,對改進后的風機性能進行了評價和分析。離心風機結構參數試驗模型為2900轉/分斜槽離心風機,傳動方式為A型傳動。斜槽離心風機主要由葉輪、蝸殼和集熱器組成。葉輪由前、后、葉片三部分組成。(2)改造前后數據試驗:風機改造后,鍋爐正常運行1小時,運行參數穩(wěn)定。前盤為錐形弧。葉輪直徑480mm,葉片數20片。短刃10片,長刃10片,分布均勻。短葉片為截短半徑的前葉片,其余部分與長葉片結構相同,所有葉片出口安裝角度為140度。葉輪圖如圖3.1所示。蝸殼為矩形截面,寬度為69mm。
在中壓除塵風機的改進設計中,根據葉輪流道截面逐漸變化的原理,建立了風機葉片型面成形的數學模型。對設計的流場進行了計算。計算結果表明,新設計的風機性能較好。但仍有一些問題需要進一步解決和改進。
1。在中壓除塵風機葉片型線設計中,選擇了葉片安裝角隨葉輪半徑線性變化的規(guī)律進行設計,但風機葉片型線的形成方法有多種形式。本文選擇了一種較為典型的線性成形方法,并取得了較好的效果。因此,可以對離心風機葉片型線成形方法進行進一步的研究。
2。通過觀察風機設計工況下葉片通道的流線圖,可以看出設計風機長短葉片吸力面上仍存在一些分離現象。通過查閱文獻,發(fā)現一些流量控制方法可以改善葉片吸力面分離現象。因此,如果合理地將有效的流量控制方法應用于設計風機,可以使風機的吸入面分離。為了降低設計風機的噪聲值,提高風機的效率,選用葉片出口安裝角2aβ為120度。性能進一步提高。
3。在數值計算方面,在計算條件允許的情況下,可以使用更密集的網格和近壁模型。在湍流模型方面,還值得進一步研究,以便在離心風機的各種工況下得到更準確的結果。
改造后,對兩臺中壓除塵風機進行性能評價試驗,包括全負荷風機數據試驗、改造前后數據試驗和風機較大出力試驗數據,如下所示。(1)滿負荷風機數據試驗:鍋爐滿負荷運行時,爐內氧含量維持在2.5%,爐內負壓維持在0-50pa,鍋爐穩(wěn)定運行2小時后,現場測量兩臺引風機數據。滿足機組滿負荷要求。結果表明,采用數值計算方法可以簡單、準確地得到給定子午線分布的葉輪子午線輪廓。風機滿負荷數據見表2。
(2)改造前后數據試驗:風機改造后,鍋爐正常運行1小時,運行參數穩(wěn)定。采集風機的數據,并與改造前的數據進行比較。鍋爐滿負荷時,兩臺引風機電流降低48A。
(3)中壓除塵風機較大出力試驗:冷態(tài)下,風機擋板開度為80%時,風機電流達到設計值。A風機入口擋板開啟80%時,風機電流為146A,B風機入口擋板開啟80%時,風機電流為145.6A,滿足設計要求。
結論
(1)與改造前后引風機試驗數據相比,A風機效率提高17.2%,B風機效率提高13.8%。正常運行時,風機進口擋板開度為50%~55%,風機電流95~100A,滿足機組滿負荷運行要求。
(2)改造后中壓除塵風機電耗降低26384 kWh,增壓風機電耗降低52159 kWh,合計77543 kWh,輔助電耗降低0.5%。
(3)改造后,取消風機冷卻水,風機軸承高溫度為55C,滿足設計要求。通過排除冷卻水,每年可節(jié)約約5萬噸水。
(4)通過中壓除塵風機性能試驗報告和實際運行,引風機改造能滿足運行要求,節(jié)電效果明顯。